2D Euler Sedov (with symmetry)#

This problem solves the 2D conservative Euler equations

\[\begin{split}\frac{\partial }{\partial t} \begin{bmatrix}\rho \\ \rho u_x \\ \rho u_y\\ \rho E \end{bmatrix} + \frac{\partial }{\partial x} \begin{bmatrix}\rho u_x \\ \rho u_x^2 +p \\ \rho u_x u_y \\ (E+p)u_x \end{bmatrix} \frac{\partial }{\partial y} \begin{bmatrix}\rho u_y \\ \rho u_x u_y \\ \rho u_y^2 +p \\ (E+p)u_y \end{bmatrix}= 0\end{split}\]

where the pressure \(p\) is related to the conserved quantities through the equation of the state

\[p=(\gamma -1)(\rho E-\frac{1}{2}\rho (u_x^2 + u_y^2)).\]
  • Initial conditions in primitive variables:

    • a high pressure concentrated small spherical region of radius \(R = 3 \min(dx, dy)\)

    • \(\left\{\begin{matrix}\rho =1, u = 0, v = 0, p = ((\gamma-1)0.851072)/(\pi R^2); & r\leq R \\ \rho =1, u = 0, v = 0, p = 2.5\cdot 10^{-5}; & r>R \end{matrix}\right.\)

    • This IC is used to create the corresponding initial conditions in conservative variables.

  • By default, \(\gamma = 1.4\)

  • Domain is \([0.0, 1.2]^2\) with reflective BC on \(y=0\) and \(x=0\) and homogeneous Neumann for \(x=1.2\) and \(y=1.2\)

  • Typically, integration is performed for \(t \in (0, 1)\)

Mesh#

python3 pressio-demoapps/meshing_scripts/create_full_mesh_for.py \
        --problem sedov2dsym_s<stencilSize> -n Nx Ny --outDir <destination-path>

where

  • Nx, Ny is the number of cells you want along \(x\) and \(y\) respectively

  • <stencilSize> = 3 or 5 or 7: defines the neighboring connectivity of each cell

  • <destination-path> is where you want the mesh files to be generated. The script creates the directory if it does not exist.

Important

When you set the <stencilSize>, keep in mind the following constraints (more on this below):

  • InviscidFluxReconstruction::FirstOrder requires <stencilSize> >= 3

  • InviscidFluxReconstruction::Weno3 requires <stencilSize> >= 5

  • InviscidFluxReconstruction::Weno5 requires <stencilSize> >= 7

C++ synopsis#

#include "pressiodemoapps/euler2d.hpp"

int main(){
  namespace pda     = pressiodemoapps;

  const auto meshObj = pda::load_cellcentered_uniform_mesh_eigen("path-to-mesh");

  const auto probId = pda::Euler2d::SedovSymmetry;
  const auto scheme = pda::InviscidFluxReconstruction::FirstOrder; //or Weno3, Weno5
  auto problem      = pda::create_problem_eigen(meshObj, probId, scheme);
  auto state      = problem.initialCondition();
}

Python synopsis#

import pressiodemoapps as pda

meshObj = pda.load_cellcentered_uniform_mesh("path-to-mesh")

probId  = pda.Euler2d.SedovSymmetry
scheme  = pda.InviscidFluxReconstruction.FirstOrder # or Weno3, Weno5
problem = pda.create_problem(meshObj, probId, scheme)
state   = problem.initialCondition()