2D Euler Normal Shock#
This problem solves the 2D conservative Euler equations
where the pressure \(p\) is related to the conserved quantities through the equation of the state
Initial condition is a Mach 9 shock normal to the x-axis positioned at \(x = 1/6\).
By default, \(\gamma = 1.4\)
Domain is \([0, 2]\times[0, 1]\)
- BC are homogeneous Neumann at left (\(x=0\)) and right (\(x=2\)) boundaries,
and reflective at top (\(y=1\)) and bottom (\(y=0\)) boundaries
Mesh#
python3 pressio-demoapps/meshing_scripts/create_full_mesh_for.py \
--problem normalshock2d_s<stencilSize> -n Nx Ny --outDir <destination-path>
where
Nx, Ny
is the number of cells you want along \(x\) and \(y\) respectively<stencilSize> = 3 or 5 or 7
: defines the neighboring connectivity of each cell<destination-path>
is where you want the mesh files to be generated. The script creates the directory if it does not exist.
Important
When you set the <stencilSize>
, keep in mind the following constraints (more on this below):
InviscidFluxReconstruction::FirstOrder
requires<stencilSize> >= 3
InviscidFluxReconstruction::Weno3
requires<stencilSize> >= 5
InviscidFluxReconstruction::Weno5
requires<stencilSize> >= 7
C++ synopsis#
#include "pressiodemoapps/euler2d.hpp"
int main(){
namespace pda = pressiodemoapps;
const auto meshObj = pda::load_cellcentered_uniform_mesh_eigen("path-to-mesh");
const auto probId = pda::Euler2d::NormalShock;
const auto scheme = pda::InviscidFluxReconstruction::FirstOrder; //or Weno3 or Weno5
auto problem = pda::create_problem_eigen(meshObj, probId, scheme);
auto state = problem.initialCondition();
}
Python synopsis#
import pressiodemoapps as pda
meshObj = pda.load_cellcentered_uniform_mesh("path-to-mesh")
probId = pda.Euler2d.NormalShock
scheme = pda.InviscidFluxReconstruction.FirstOrder # or Weno3 or Weno5
problem = pda.create_problem(meshObj, probId, scheme)
state = problem.initialCondition()