romtools.workflows.parameters#
Classes
|
Normally distributed parameter |
Abstract implementation |
|
|
Random parameter with distribution described by a scipy.stats.rv_continuous object |
|
Constant string-valued parameter |
|
Random parameter with a triangular distribution |
|
Uniformly distributed floating point |
- class romtools.workflows.parameters.GaussianParameter(parameter_name, mean=0, std=1)[source]#
Bases:
ParameterNormally distributed parameter
- Parameters:
parameter_name (str)
mean (float)
std (float)
- get_dimensionality()[source]#
Returns dimensionality of parameter for vector quantities. Returns 1 for scalar parameters
- Return type:
int
- scale_samples(uniform_dist_samples)[source]#
Generates samples from the desired distribution given a set of samples from a uniform distribution on (0,1)
uniform_dist_samples should be of shape (number_of_samples, self.get_dimensionality())
Returns np.array of the same shape
- Parameters:
uniform_dist_samples (array)
- Return type:
array
- class romtools.workflows.parameters.Parameter[source]#
Bases:
ABCAbstract implementation
- abstractmethod get_dimensionality()[source]#
Returns dimensionality of parameter for vector quantities. Returns 1 for scalar parameters
- Return type:
int
- abstractmethod scale_samples(uniform_dist_samples)[source]#
Generates samples from the desired distribution given a set of samples from a uniform distribution on (0,1)
uniform_dist_samples should be of shape (number_of_samples, self.get_dimensionality())
Returns np.array of the same shape
- Return type:
array
- class romtools.workflows.parameters.ScipyDistributionParameter(parameter_name, distribution, **kwargs)[source]#
Bases:
ParameterRandom parameter with distribution described by a scipy.stats.rv_continuous object
- Parameters:
parameter_name (str)
distribution (rv_continuous)
- get_dimensionality()[source]#
Returns dimensionality of parameter for vector quantities. Returns 1 for scalar parameters
- Return type:
int
- scale_samples(uniform_dist_samples)[source]#
Generates samples from the desired distribution given a set of samples from a uniform distribution on (0,1)
uniform_dist_samples should be of shape (number_of_samples, self.get_dimensionality())
Returns np.array of the same shape
- Parameters:
uniform_dist_samples (array)
- Return type:
array
- class romtools.workflows.parameters.StringParameter(parameter_name, value)[source]#
Bases:
ParameterConstant string-valued parameter
- Parameters:
parameter_name (str)
- get_dimensionality()[source]#
Returns dimensionality of parameter for vector quantities. Returns 1 for scalar parameters
- Return type:
int
- scale_samples(uniform_dist_samples)[source]#
Generates samples from the desired distribution given a set of samples from a uniform distribution on (0,1)
uniform_dist_samples should be of shape (number_of_samples, self.get_dimensionality())
Returns np.array of the same shape
- Parameters:
uniform_dist_samples (array)
- Return type:
array
- class romtools.workflows.parameters.TriangularParameter(parameter_name, lower_bound=-1, peak=0, upper_bound=1)[source]#
Bases:
ParameterRandom parameter with a triangular distribution
- Parameters:
parameter_name (str)
lower_bound (float)
peak (float)
upper_bound (float)
- get_dimensionality()[source]#
Returns dimensionality of parameter for vector quantities. Returns 1 for scalar parameters
- Return type:
int
- scale_samples(uniform_dist_samples)[source]#
Generates samples from the desired distribution given a set of samples from a uniform distribution on (0,1)
uniform_dist_samples should be of shape (number_of_samples, self.get_dimensionality())
Returns np.array of the same shape
- Parameters:
uniform_dist_samples (array)
- Return type:
array
- class romtools.workflows.parameters.UniformParameter(parameter_name, lower_bound=0, upper_bound=1)[source]#
Bases:
ParameterUniformly distributed floating point
- Parameters:
parameter_name (str)
lower_bound (float)
upper_bound (float)
- get_dimensionality()[source]#
Returns dimensionality of parameter for vector quantities. Returns 1 for scalar parameters
- Return type:
int
- scale_samples(uniform_dist_samples)[source]#
Generates samples from the desired distribution given a set of samples from a uniform distribution on (0,1)
uniform_dist_samples should be of shape (number_of_samples, self.get_dimensionality())
Returns np.array of the same shape
- Parameters:
uniform_dist_samples (array)
- Return type:
array