romtools.workflows.parameter_spaces#
Model reduction is often focused on parameterized PDEs, where \(\boldsymbol \mu\) is the parameter set. The ParameterSpace class encapsulates the notion of the parameter space.
Classes
Abstract implementation |
|
|
Homogeneous parameter space in which every parameter is a constant StringParameter. |
Empty parameter space that is useful for initializations |
|
|
Homogeneous parameter space in which every parameter is a GaussianParameter |
|
Heterogeneous parameter space consisting of a list of arbitrary Parameter objects |
|
Homogenous parameter space in which every parameter is of the same type |
Abstract implementation |
|
|
Homogeneous parameter space in which every parameter is a UniformParameter |
- class romtools.workflows.parameter_spaces.BoundedParameterSpace[source]#
Bases:
ParameterSpaceAbstract implementation
- class romtools.workflows.parameter_spaces.ConstParameterSpace(parameter_names, parameter_values)[source]#
Bases:
HomogeneousParameterSpaceHomogeneous parameter space in which every parameter is a constant StringParameter. All numeric values are converted to str-type.
Useful if you need to execute workflows in a non-stochastic setting
- Parameters:
parameter_names (Iterable[str])
- class romtools.workflows.parameter_spaces.EmptyParameterSpace[source]#
Bases:
ParameterSpaceEmpty parameter space that is useful for initializations
- generate_samples(number_of_samples, seed=None)[source]#
Generates samples from the parameter space
Returns np.array of shape (number_of_samples, self.get_dimensionality())
- Parameters:
number_of_samples (int)
- Return type:
ndarray
- class romtools.workflows.parameter_spaces.GaussianParameterSpace(parameter_names, means, stds, sampler)[source]#
Bases:
HomogeneousParameterSpaceHomogeneous parameter space in which every parameter is a GaussianParameter
- Parameters:
parameter_names (Iterable[str])
sampler (Sampler)
- class romtools.workflows.parameter_spaces.HeterogeneousParameterSpace(parameter_objs, sampler=<function MonteCarloSampler>)[source]#
Bases:
ParameterSpaceHeterogeneous parameter space consisting of a list of arbitrary Parameter objects
- generate_samples(number_of_samples, seed=None)[source]#
Generates samples from the parameter space
Returns np.array of shape (number_of_samples, self.get_dimensionality())
- Parameters:
number_of_samples (int)
- Return type:
array
- class romtools.workflows.parameter_spaces.HomogeneousParameterSpace(parameter_names, sampler, param_constructor, **kwargs)[source]#
Bases:
HeterogeneousParameterSpaceHomogenous parameter space in which every parameter is of the same type
- Parameters:
parameter_names (Iterable[str])
sampler (Sampler)
- class romtools.workflows.parameter_spaces.ParameterSpace[source]#
Bases:
ABCAbstract implementation
- abstractmethod generate_samples(number_of_samples, seed=None)[source]#
Generates samples from the parameter space
Returns np.array of shape (number_of_samples, self.get_dimensionality())
- Parameters:
number_of_samples (int)
- Return type:
array
- class romtools.workflows.parameter_spaces.UniformParameterSpace(parameter_names, lower_bounds, upper_bounds, sampler)[source]#
Bases:
HomogeneousParameterSpaceHomogeneous parameter space in which every parameter is a UniformParameter
- Parameters:
parameter_names (Iterable[str])
sampler (Sampler)